AthyECOSlate Home Page Contact Us What is Natural Slate? Common Mistakes Bottom-Up Approach Image Gallery Getting It Wrong Links - Eco Building & Construction Roof Contractors Testimonials e-mail me

 

Slate is one of the most aesthetically pleasing and durable of all roofing materials. It is indicative at once of the awesome powers of nature which have formed it and the expertise and skill of the craftsman in handshaping and laying it on the roof.

Installed properly, slate roofs require relatively little maintenance and will last 60 to 125 years or longer depending on the type of slate employed, roof configuration, and the geographical location of the property. Some slates have been known to last over 200 years. However all slate is not created equal. Slate is sedimentary rock composed of compressed and hardened layers of clay or volcanic ash. Slate varies in color, denseness and purity -- and serviceable life as a roofing material.

Hard and soft slate

Local geology is also the primary factor in the average service life of a slate roof.

Varying amounts of impurities (minerals) are contained in a vein of slate. When exposed to weather, these minerals absorb moisture quicker than pure slate. This causes flaking, or delaminating on the surface of the slates. When the surface begins to flake, the slate absorbs more moisture. The slate then becomes soft and inner layers delaminate with freeze/thaw cycles.

Porosity and hardness are also factors that affect the life of a slate roof. Even with significant amount of impurities, dense slate weathers much slower than more porous slates. Slate from different mines has different average slate roof life expectancies (with proper installation and regular maintenance):

Other factors in roof longevity

slate repair
Timely repairs by a roofer experienced in slate work will prolong the life of a roof.  (NPS Photo)


The pitch of a roof can also be a factor in life expectancy. Generally, slates on steeper slopes will outlast those on lower pitches. Steeper pitches shed rain and snow more readily, allowing the roof slates to dry thoroughly. For example, an almost vertical mansard roof shingled with slate can significantly outlast a low-slope hipped or gable roof constructed at the same time with the same slate.

Flashing, maintenance and repairs can also affect the life of a slate roof

Deterioration of Slate and Slate Roofs

The durability of a slate roof depends primarily on four factors: the physical and mineralogical properties of the slate; the way in which it is fabricated; installation techniques employed; and, regular and timely maintenance. The first three of these factors are examined below.

The natural weathering of roofing slate manifests itself as a slow process of chipping and scaling along the cleavage planes. Paper thin laminations flake off the surface of the slate and the slate becomes soft and spongy as the inner layers begin to come apart, or delaminate. The nature of the sound given off by a slate when tapped with one's knuckles or slating hammer is a fair indication of its condition. Highgrade slate, when poised upon the fingertips and struck, will emit a clear, solid sound. Severely weathered slates are much less sonorous, and give off a dull thud when tapped.

The weathering of slate is chiefly due to mineral impurities (primarily calcite and iron sulfides) in the slate which, in concert with alternating wet/dry and hot/cold cycles, react to form gypsum. Because gypsum molecules take up about twice as much volume as calcite molecules, internal stresses result from the reaction, causing the slate to delaminate. This type of deterioration is as prominent on the underside of the roof as on the exposed surface due to the leaching and subsequent concentration of gypsum in this area. Consequently, deteriorated roofing slates typically cannot be flipped over and reused.

slate delamination
Paper thin lamination can be seen flaking off this weathered, 120 year piece of Pennsylvania Hard-Vein slate. Photo: Jeffrey S. Levine.

The chemical and physical changes which accompany slate weathering cause an increase in absorption and a decrease in both strength and toughness. The tendency of old, weathered slates to absorb and hold moisture can lead to rot in underlying areas of wood sheathing. Such rot can go undetected for long periods of time since, often, there is no accompanying leak. Due to their loss of strength, weathered slates are more prone to breakage, loss of corners, and cracking.

Slates with low calcite content tend to weather slowly. Dense slates, with low porosity, likewise decay slower than slates with equal calcite, but with a greater porosity. The pitch of a roof can also affect its longevity. The steeper the pitch, the longer the slate can be expected to last as water will run off faster and will be less likely to be drawn under the slates by capillary action or driven under by wind forces. Spires and the steep slopes of Mansard roofs often retain their original slate long after other portions of the roof have been replaced. Areas of a roof subject to concentrated water flows and ice damming, such as along eaves and valleys, also tend to deteriorate more rapidly than other areas of the roof.

Mechanical agents, such as thermal expansion and contraction and the action of frost, are subordinate in the weathering of slate, coming into play only after the slate has been materially altered from its original state by the chemical transformation of calcite to gypsum. The more rapid deterioration of slates found on roof slopes with the most severe exposure to the sun, wind, and rain (typically, but not always, a southern exposure) may be attributable to the combined result of the deleterious effects of impurities in the slate and mechanical agents. Atmospheric acids produce only negligible deterioration in roofing slate.

It is difficult to assess the procedures by which a piece of slate has been fabricated without visiting the quarry and observing the process first hand. The location and size of nail holes, grain orientation, the condition of corners, and the number of broken pieces are all things which may be observed in a shipment of slate to judge the quality of its fabrication. Nail holes should be clean and with a shallow countersink on the face of the slate for the nail head; grain oriented along the length of the slate; and, corners left whole. An allowance for 10% breakage in shipment is typically provided for by the quarry.

Installation problems often involve the improper nailing and lapping of slates. The nailing of slates differs from that of other roofing materials. Slate nails should not be driven tight as is the case with asphalt and wood shingles. Rather, they should be set such that the slate is permitted to hang freely on the nail shank. Nails driven too far will crack the slate and those left projecting will puncture the overlying slate. Nail heads left exposed accelerate roof deterioration by providing a point for water entry. Non-ferrous slater's nails, such as solid copper or stainless steel, should always be used since plain steel and galvanized nails will usually rust out long before the slate itself begins to deteriorate. The rusting of nineteenth century cut nails is a common cause of slate loss on historic roofs.

When joints are improperly broken (i.e., when slates lap the joints in the course below by less than 3" [7.5 cm]), it is possible for water to pass between the joints, through the nail holes and ultimately to the underlying felt, where it will cause deterioration and leaks to develop. Insufficient headlap can also result in leaks as water entering the joints between slates may have a greater tendency to be wind blown beyond the heads of the slates in the course below.

Occasionally, individual slates are damaged. This may be caused by falling tree limbs, ice dams in gutters, valleys, and chimney crickets, the weight of a workman walking on the roof, or a naturally occurring fault in the slate unit. Whatever the form of damage, if it is caught soon enough, the roof can usually be repaired or selectively replaced and deterioration mitigated.

The ability to lay slate properly so as to produce a watertight and aesthetically pleasing roof requires training, much practice, and the right tools. The installation and repair of slate roofs should be entrusted only to experienced slaters.


Repairing Slate Roofs

Broken, cracked, and missing slates should be repaired promptly by an experienced slater in order to prevent water damage to interior finishes, accelerated deterioration of the roof and roof sheathing, and possible structural degradation to framing members.

The damaged slate is first removed by cutting or pulling out its nails with a ripper. If steel cut nails, rather than copper nails, were used in laying the roof, adjacent slates may be inadvertently damaged or displaced in the ripping process, and these, too, will have to be repaired. If the slate does not slide out by itself, the pointed end of the ,slate hammer can be punched into the slate and the slate dragged out. A new slate, or salvaged slate, which should match the size, shape, texture, and weathered color of the old slate, is then slid into place and held in position by one nail inserted through the vertical joint between the slates in the course above and approximately one inch below the tail of the slate two courses above.
copper bib protecting newly created nail hole
After removing the deteriorated slate and sliding the new slate into place, it is secured with a copper nail. A copper bib (shown here) is formed to protect the newly created nail hole. Finally, a slate hammer is used to push the bib in place over the nail head. Photo: Jeffrey S. Levine.

To prevent water penetration through the newly created nail hole, a piece of copper with a friction fit, measuring roughly 3" (7.5 cm) in width and 8" (20 cm) in length, is slid lengthwise under the joint between the two slates located directly above the new slate and over the nail. Alternate methods for securing the replacement slate include the use of metal hooks, clips, and straps that are bent over the tail end of the slate. The application of roofing mastic or sealants to damaged slates should not be considered a viable repair alternative because these materials, though effective at first, will eventually harden and crack, thereby allowing water to enter.

Mastic also makes future repairs more difficult to execute, is unsightly, and, when applied to metal flashings, accelerates their corrosion.

When two or more broken slates lie adjacent to each other in the same course, or when replacing leaky valley flashings, it is best to form pyramids (i.e., to remove a diminishing number of slates from higher courses) to keep the number of bibs required to a minimum. When reinstalling the slates, only the top slate in each pyramid will need a bib. Slates along the sides of the pyramid will receive two nails, one above the other, along the upper part of its exposed edge.

When many slates must be removed to effect a repair, the sheathing should be checked for rotted areas and projecting nails. Plywood is generally not a good replacement material for deteriorated wood sheathing due to the relative difficulty of driving a nail through it (the bounce produced can loosen adjacent slates). Instead, new wood boards of similar width and thickness to those being replaced should be used. Because the nominal thickness of today's dimension lumber is slightly thinner than that produced in the past, it may be necessary to shim the new wood boards so that they lie flush with the top surface of adjacent existing sheathing boards. Pressure treated lumber is not recommended due to its tendency to shrink. This can cause the slates to crack and become displaced.

To permit proper re-laying of the slate, the new roof sheathing must be of smooth and solid construction. At least two nails should be placed through the new boards at every rafter and joints between the ends of the boards should occur over rafters. Insufficient nailing will cause the boards to be springy, making nailing of the slates difficult and causing adjacent slates to loosen in the process. Unevenness in the sheathing will show in the finished roof surface and may cause premature cracking of the slate. Roof sheathing in valleys and along hips, ridges, and eaves may be covered with waterproof membrane underlayment rather than roofing felt for added protection against leakage.

In emergency situations, such as when severe hurricanes or tornadoes blow numerous slates off the roof, a temporary roof covering should be installed immediately after the storm to prevent further water damage to the interior of the building and to permit the drying out process to begin. Heavy gauge plastic and vinyl tarpaulins are often used for this purpose, though they are difficult to secure in place and can be blown off in high winds. Roll roofing, carefully stitched in to areas of the remaining roof, is a somewhat more functional solution that will allow sufficient time to document the existing roof conditions, plan repairs, and order materials.

Slate roof repair is viable for localized problems and damaged roofs with reasonably long serviceable lives remaining. If 20% or more of the slates on a roof or roof slope are broken, cracked, missing, or sliding out of position, it is usually less expensive to replace the roof than to execute individual repairs. This is especially true of older roofs nearing the end of their serviceable lives because even the most experienced slater will likely damage additional slates while attempting repairs. Depending on the age of the slate, its expected serviceable life, and the cause(s) of deterioration, it may or may not be cost effective to salvage slates. Where deteriorated nails or flashings are the cause of the roof failure, salvage of at least some slates should be possible for use in repairs. When salvaging slates, each must be sounded to discover cracks and faults and the degree to which it has weathered. It is usually wise to salvage slates when only a portion of the roof is to be replaced. In this way, the salvaged slates may be used for future repairs to the remaining sections of the roof.



 

 

|AthyECOSlate Home Page| |Contact Us| |What is Natural Slate?| |Common Mistakes| |Bottom-Up Approach| |Image Gallery| |Getting It Wrong| |Links - Eco Building & Construction| |Roof Contractors| |Testimonials|